723 research outputs found

    CO observations of southern mergers

    Get PDF
    There are good reasons to believe that the formation of some elliptical galaxies result from the merging of two disk galaxies, as Toomre and Toomre first suggested (1972, Ap. J. 178, 623). Such a process strongly enhances the star-formation activity of the system, thus consuming its molecular gas. This might account for the low cold-gas content of elliptical galaxies compared to that of spirals. Researchers present here CO(1-0) and CO(2-1) observations of a sequence of three objects, NGC 1614, NGC 3256, and NGC 7252, that present characteristic features of merger remnants: single body and extended tidal tails. NGC 3256 and 7252 even exhibit the r(exp 1/4) radial light distribution that is the signature of elliptical galaxies, which indicates that their stellar bodies are in late stages of relaxation. Both NGC 1614 and NGC 3256 undergo extended bursts of star formation revealed by their large far-infrared luminosities, and by the presence in the near-infrared spectrum of the 3.28 microns feature (Morwood: 1986, A. A. 166, 4) attributed to polycyclic aromatic hydrocarbons. On the other hand, NGC 7252 has a milder activity of star formation, as suggested by a lower infrared luminosity, and thus seems to have gone past the starburst phase. The CO data were collected with the Swedish-ESO 15 m Submillimeter Telescope (SEST) (beamsize = 43 seconds at 115 GHz, 23 seconds at 230 GHz). For NGC 7252, researchers have only observed the central position in CO-12(1-0). The spectrum is displayed together with an HI spectrum obtained with the Nancay radiotelescope. Researchers mapped NGC 1614 and NGC 3256 in CO-12(1-0) and CO-12(2-1), and also observed the nucleus of NGC 3256 in CO-13(1-0). The various CO spectra obtained towards the nuclei of both galaxies are presented. Characteristics of the galaxies are gathered, with luminosities and masses in solar units and temperatures in Kelvins

    The molecular spiral arms of NGC 6946

    Get PDF
    High resolution observations of molecules in external galaxies are essential to understanding physical processes leading to the formation of stars. One question is whether there is a spiral structure in the molecular gas, but it was not possible to resolve the spiral arms of external galaxies until the advent of large millimeter-wave telescopes. With the Institute for Radio Astronomy in the Millimeter Range (IRAM) 30 m telescope, researchers are carrying through the mapping of NGC 6946 in the CO-12(1-0) and (2-1) lines. This galaxy is a large, gas-rich Scd spiral with a strong star formation activity. NGC 6946 is well studied at radio and optical wavelengths, so that it is possible to compare the location of the spiral arms tracers: HI ridge, HII regions and molecular clouds. The disk CO emission is very contrasted (no lines for some positions, 1 K in CO(1-0) for some others) and correlated with the optical spiral arms: this clearly shows up in a figure which presents superimposed contours of CO(2-1) integrated emissivity and of H alpha line emission. The agreement is very good, and there is no displacement across the arm between the CO, HI and H alpha ridges of emission. The arms are barely resolved by the 23 inch beam and the molecular contrast averaged over the map is about 4. The CO(2-1) maxima are closer to the position of the HII regions than those of CO(1-0), which could be due to variations of excitation conditions. The CO excitation in the disk of NGC 6946 is low: when all data are convolved to the same resolution of 23 inches the CO(2-1) lines are about 0.45 times fainter than the CO(1-0) ones, while in the nucleus they have roughly the same intensity. This suggests that in the disk of NGC 6946 most of the CO emission comes from cold optically thick gas located in cloud envelopes rather than from cloud cores. The molecular and atomic component in the observed regions of NGC 6946 seems to be organized in large gaseous complexes

    An Origin of the Huge Far-Infrared Luminosity of Starburst Mergers

    Full text link
    Recently Taniguchi and Ohyama found that the higher 12^{12}CO to 13^{13}CO integrated intensity ratios at a transition JJ=1--0, R=I(12R = I(^{12}CO)/I(13/I(^{13}CO) 20\gtrsim 20, in a sample of starburst merging galaxies such as Arp 220 are mainly attributed to the depression of 13^{13}CO emission with respect to 12^{12}CO. Investigating the same sample of galaxies analyzed by Taniguchi & Ohyama, we find that there is a tight, almost linear correlation between the dust mass and 13^{13}CO luminosity. This implies that dust grains are also depressed in the high-RR starburst mergers, leading to the higher dust temperature (TdT_{\rm d}) in them because of the relative increase in the radiation density. Nevertheless, the average dust mass (MdM_{\rm d}) of the high-RR starburst mergers is higher significantly than that of non-high RR galaxies. This is naturally understood because the galaxy mergers could accumulate a lot of dust grains from their progenitor galaxies together with supply of dust grains formed newly in the star forming regions. Since LL(FIR) MdTd5\propto M_{\rm d} T_{\rm d}^5 given the dust emissivity law, Sνλ1S_\nu \propto \lambda^{-1}, the increases in both MdM_{\rm d} and TdT_{\rm d} explain well why the starburst mergers are so bright in the FIR. We discuss that the superwind activity plays an important role in destroying dust grains as well as dense gas clouds in the central region of mergers.Comment: 10 pages (aaspp4.sty), 3 postscript figures (embedded). Accepted for publication in Astrophysical Journal Letter

    13CO(J=10)^{13}CO(J = 1 -- 0) Depression in Luminous Starburst Mergers

    Full text link
    It is known that the class of luminous starburst galaxies tends to have higher R=12CO(J=10)/13CO(J=10)R =^{12}CO(J=1--0)/^{13}CO(J=1--0) integrated line intensity ratios (R>20R>20) than normal spiral galaxies (R10R \sim 10). Since most previous studies investigated only RR, it remains uncertain whether the luminous starburst galaxies are overabundant in 12^{12}CO or underabundant in 13^{13}CO. Here we propose a new observational test to examine this problem. Our new test is to compare far-infrared luminosities [LL(FIR)] with those of 12^{12}CO and 13CO[L(12CO)^{13}CO [L(^{12}CO) and L(13CO)L(^{13}CO), respectively]. It is shown that there is a very tight correlation between L(12CO)L(^{12}CO) and L(FIR), as found in many previous studies. However, we find that the 13^{13}CO luminosities of the high-R galaxies are lower by a factor of three on the average than those expected from the correlation for the remaining galaxies with ordinary RR values. Therefore, we conclude that the observed high RR values for the luminous starburst galaxies are attributed to their lower 13^{13}CO line intensities.Comment: 9 pages (aaspp4.sty), 3 postscript figures (embedded). Accepted for publication in Astrophysical Journal Letter

    Gas and Dust in the Taffy Galaxies: Ugc12914/15

    Get PDF
    We present a comprehensive study of the dust and gas properties in the after-head-on-collision UGC12914/15 galaxy system using multi-transition CO data and SCUBA sub-mm continuum images at both 450 and 850μ\mum. CO(3-2) line emission was detected in the disks of UGC 12914 and UGC 12915 as well as in a bridge connecting the two galaxies. Dust emission at 450μ\mum was detected for the first time in the two galactic disks and in the connecting bridge. Using an LVG excitation analysis model we have obtained good estimates of the physical parameters in different regions of this system and the amount of molecular gas was found to be 3-4 times lower than that estimated by other investigators using the standard Galactic CO-to-H2 conversion factor. Comparing with the dust mass derived from the SCUBA data, we found that the gas-to-dust ratio was comparable to the Galactic value in the two galaxy disks but a factor of ~3 higher in the bridge. The physical condition of the molecular gas in the bridge is comparable to that in the diffuse clouds in our Galaxy. Our result is consistent with the scenario that the bridge molecular gas originated from the disk molecular clouds and has been drawn out of the galactic disks due to direct cloud-cloud collision. Our data indicate that the global star formation efficiency (SFE) in UGC 12915 is comparable to that of normal spiral galaxies, and the SFE is 40% lower in UGC 12914 than in UGC 12915. Little star formation activity was found in the bridge except in an HII region adjacent to the disk of UGC 12915.Comment: Accepted by AJ. 45 pages, 10 figures (Fig 1-5 and Fig 7 in gif format

    Systematic Uncertainties in Stellar Mass Estimation for Distinct Galaxy Populations

    Get PDF
    We show that different stellar-mass estimation methods yield overall mass scales that disagree by factors up to ~2 for the z=0 galaxy population, and more importantly, relative mass scales that sometimes disagree by factors >~3 between distinct classes of galaxies (spiral/irregular types, classical E/S0s, and E/S0s whose colors reflect recent star formation). This comparison considers stellar mass estimates based on (a) two different calibrations of the correlation between K-band mass-to-light ratio and B-R color (Bell et al., Portinari et al.) and (b) detailed fitting of UBRJHK photometry and optical spectrophotometry using two different population synthesis models (Bruzual-Charlot, Maraston), with the same initial mass function in all cases. We also compare stellar+gas masses with dynamical masses. This analysis offers only weak arguments for preferring a particular stellar-mass estimation method, given the plausibility of real variations in dynamical properties and dark matter content. These results help to calibrate the systematic uncertainties inherent in mass-based evolutionary studies of galaxies, including comparisons of low and high redshift galaxies.Comment: 5 pages including 2 enlarged figures, ApJ Letters, accepte
    corecore